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ABSTRACT 

 
The present study deals with a site-specific innovative solution executed in the northeast 

coastline of Odisha in India. The retarded embankment which had been maintained yearly by traditional 
means of ‘bullah piling’ and sandbags, proved ineffective and got washed away for a stretch of 350 
meters in 2011. About the site condition, it is required to design an efficient coastal protection system 
prevailing to a low soil bearing capacity and continuously exposed to tides and waves. The erosion of 
existing embankment at Pentha ( Odisha ) has necessitated the construction of a retarded embankment. 
Conventional hard engineered materials for coastal protection are more expensive since they are not 
readily available near to the site. Moreover, they have not been found suitable for prevailing in in-situ 
marine environment and soil condition. Geosynthetics are innovative solutions for coastal erosion and 
protection are cheap, quickly installable when compared to other materials and methods. Therefore, a 
geotextile tube seawall was designed and built for a length of 505 m as soft coastal protection structure. 
A scaled model (1:10) study of geotextile tube configurations with and without gabion box structure is 
examined for the better understanding of hydrodynamic characteristics for such configurations. The 
scaled model in the mentioned configuration was constructed using woven geotextile fabric as geo 
tubes. The gabion box was made up of eco-friendly polypropylene tar-coated rope and consists of small 
rubble stones which increase the porosity when compared to the conventional monolithic rubble mound. 
In such a configuration, multi-tiered geotextile tube seawall was constructed with four layers of 10 
hydraulically filled geotextile tube as the core, while stone filled polypropylene tar coated rope gabion 
boxes acted as armour layer for the structure. This scaled model examined for emerged water 
conditions of 0.5 m design water depth for different wave heights and different wave periods. The 
geotextile tube with gabion showed good wave energy dissipation characteristics. Furthermore,  
reflection characteristics of this model were also quantified. After that, the design was implemented and 
constructed as a pilot project on Pentha coast. This case study establishes geotextile tube seawall as 
an alternative to the conventional method of coastal protection.  
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1 INTRODUCTION 
 

The coastal state of Odisha is almost protected with saline embankment for a length of 475 km 
along the shoreline, which constructed with locally sourced soil. A particular stretch of saline 
embankment has been observed to regularly eroded during the storm surge, tides, waves, and flood. 
Pentha (20°32.5’N 86°47.5’E) is a coastal village in Kendrapara District of Odisha State at about a 
distance of 8.6 km from Rajnagar Town, in India. The damage to the saline embankment was posing a 
significant threat to the lives and livelihood of the coastal communities. In addition to this, As per the 
past 25 years, metrological data pertain to the coastline was also affected by two cyclones, viz. Phailin 
(2013) and Hud Hud (2014). Therefore, a retarded embankment built which is also likely to erode if not 
protected. The Government of India intends to construct a suitable geotextile tube embankment on the 
seaside of the retarded embankment. Hence a new geotextile tube embankment was proposed which 
lies between the two points of (20°32’23.10″ N – 86°47.18.01” E) and (20°32’23.10” N – 86°47’18.01” 
E) for 505 m length (Figure 1). The site was continuously affected by cyclones and storm surge, 
associated with a low pressure weather system, whereas the tidal ingression is around 500 meter into 
the land since 1999, that causes the water to pile up higher than the ordinary sea level and tends to 
increase the wave height which is a predominant reason for erosion of beach berms and dunes, since 
storm surge waves are non-breaking waves. The region was connected with Hexa Rivers Brahmani, 
Baitarani, Chinchiri, Pathsala, Maipura, Kharasrota, Barunei and Dhamara. The coastal tracts with 
those rivers are interconnected with fault lineament. The general topography is irregular with many drain 
cuts, rivers, lakes, ponds, swamps, estuaries and lagoons. 
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Fig. 1 Google image of geotextile seawall of 50m scale (accessed on July 2017) 
 

1.1 Coastal erosion 

 
High tide level at the site is about 4 m w.r.t MSL and storm surge is 1 m. Therefore, vast 

quantities of tidal reach pass into rivers for more than 20 km distance from the river mouth. The site lies 
between two rivers which discharge water into the sea and the circulation of currents between these 
two river clusters lead to erosion. The bathymetry is perfectly parallel to the shoreline, and the beach 
slope is 1:60, resulting in the formation of regular waves at equal intervals. Since beach slope is gentle 
wave breaks on the longshore bar, and due to higher wave celerity, it plunges over foreshore up to 
berm. Which results in movement of sediments from onshore and transported back to foreshore during 
backwashing, In addition to cross-shore transport (littoral drift). Further, the site is continuously affected 
by cyclones, storm surges, associated with a low-pressure weather system. A storm surge causes the 
water to pile up higher than the average sea level and tends to increase the wave height. It is the 
predominant reason for the erosion of beach berms and dunes. Since storm surge waves are of high 
intensity and breaks after longshore bar, the gradient in transport rate increases in the direction of net 
transport. The conventional materials usually used for protection against coastal erosion are rubble 
mounds and artificial armour units. However, these materials are costly and time-consuming to install, 
apart from not being readily available in large enough quantities. On the other hand, geosynthetics 
(geotextile-tube and gabion embankments) can serve as cost-effective soft engineering solutions for 
coastal protection. Moreover, when compared with conventional rubble mounds (core stone of density 
2.65 t/m3 with 20% void ratio) the load intensity due to geotextile tube (filled with sand of density 2 t/m3 
with 30% void ratio) is significantly lower. Additionally, geotextile tube acts as a single monolithic unit 
of high stability whereas core stones will be heterogeneous. Gabion box filled with small rocks which is 
more porous and hence, highly dissipative to wave energy compared to armour stones of equal weight. 
Thus, geotextile tube with gabion box protection is an excellent solution for coastal protection 
applications. The increase in wave reflection on coastal structures can lead to poor performance under 
the rough weather, which results in the increased possibility of scour and failure of coastal structures. 
One way of solving such problem is by deploy embankments with high energy dissipation 
characteristics, using unique geometries of geotextile tube and gabion embankments. In this study, an 
attempt is made to design and to understand the hydrodynamic characteristics of geotextile tube along 
with gabion boxes as armour layer. 
 

1.2 Process of erosion 

 
Coast near the Pentha is a village subjected to severe erosion for the past 25 years. Initially, 

the sea was 500 m away from the existing saline embankment. Since this original saline embankment 
eroded, a retarded embankment has been constructed 60 m behind. The shore was at 50 m from the 
retarded embankment on 21st Nov 2009 and on 23rd Oct 2011 and coastline was at 33 m from retarded 
embankment eroded at a rate of 8.5 m/annum. Hence the erosion rate is about 8.5 m per annum. Storm 
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waves from 2009 encroached around 300 m stretch of the retarded embankment. Since the retarded 
embankment proven ineffective a new standalone geotextile tube embankment has designed with 30 
m base width and a height of 7.4 m, aligned about 5 m to 10 m away from the retarded embankment 
for a length of 700 m during 2011; The standalone geotextile tube cross-section detailed in Figure 2. 
However, due to the subsequent erosion of coast, the base was integrated, and the width of geotextile 
tube embankment had altered to 24 m from 30 m. 
 

 
 

Fig. 2 Typical cross-sections of geotextile tube embankment (All dimensions are in m) 
 

1.3 Site details 

 
Soil samples obtained from the site was air dried, pulverised and sieved. The soil properties 

obtained through various laboratory tests. Soil samples collected at different locations reveal that the 
clay proportions in the soil content are about 87% and remaining silt and fine particles of quartz ranging 
1 μm to 0.6 μm. The black coloured clayey soil in this region consists of pods and pockets; these soil 
samples can induce high hydrostatic pressure in the fluid within pore thus causing impounding of 
groundwater. The obtained soil samples are highly plastic with a liquid limit of 82%, plastic limit of 36% 
and the with a plasticity index of 46%, such soil is semi-impermeable, which is capable of absorbing 
large amounts of water due to the structural, absorption and capillary effects. The soil was classified as 
CH (Clay of highly plastic) with 87% of clay and 13% of silt based on unified soil classification system.  

2 Background 
 

Hydrostatic pressure occurs due to groundwater seepage and development of pore water 
pressure mobilises sufficient stress in the soil. The foundation soil over the site is highly plastic, and the 
soil characteristics are poor.  Hence this low bearing and undrained material behaviour can offer less 
resistance to the structural loads when exposed to dynamic wave loading. Apart from foundation soil, 
wave characteristics must adequately assess through model study, which needed for understanding 
structural stability well in advance. A brief literature study of geotextile tube seawall with and without 
gabion protection as a coastal structure conducted along with the practical experience gained on the 
construction grounds. 

 

2.1 Geotextile 

 
Geotextile is synthetic material available in the woven and non-woven form, with various 

material compositions such as polyester, polyethene, and polypropylene. These materials are eco-
friendly and non-reactive to the marine environment. Geotextile fabricated into various elements such 
as geotextile bags, geotextile mattress, geotextile tubes and geotextile containers. Each one of it will 
differ on its geometry used for different applications depending upon the loads, the strength of the fabric 
used, filling method, filling ratio, stability, and durability. In this regard, (Heerten and Wittmann 1985) 
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discussed the physical dimensions of geotextile, the gradation of fill material and filter criteria based on 
the geotechnical application related to river and canal application. A complete physical and chemical 
laboratory test on geotextiles to assess the permeability and soil retention is provided by (Luettich et al. 
1992). 

 

2.2 Geotextile tubes 

 
Geotextile tubes are made up of synthetic fibres which are sustainable, permeable textile fibres 

those can contain, filter, and reinforce soil. The integrity of the geotextile structure depends on the type 
of infill material and type of geosynthetics used. The permeability of the infill material and Apparent 
Opening Size (AOS) of geotextile has significant impacts on water outflow and rate of formation of the 
filter cake. Consequently, the strength of the soil infill in geotextile tubes with high moisture content will 
not be sufficient to support geotextile tube stacking (Shin and Oh 2007).  Leshchinsky et al. 1996 have 
developed an analytical solution based on a computer program (GeoCops), to predict the design 
parameters such as pumping pressure, circumferential tensile force, and unit weight of the fill material 
along with the tube height. Various studies on the stability of stacked geotextile tubes under wave 
actions can be found in the works of Van Steeg et al. (2011). Experimental studies of geotextile sand-
filled containers for dune erosion have been carried out by (Das Neves et al. 2009,  Bezuijen et al. 2004, 
Pilarczyk 2008, Cho 2009). Kim et al. (2013) performed Finite Element Analyses (FEAs) on ground 
modification techniques for improved stability of geotextile tube–reinforced reclamation embankments 
subject to scouring. However, there are few studies on the stability of stacked geotextile tubes subjected 
to hydrodynamic characteristics and scouring. 
 

2.3 Polypropylene rope gabion boxes 

 
Gabion boxes filled with a smaller range of stones are more porous and therefore capable of 

dissipating sizeable kinematic wave forces. Stacking of gabion boxes with each other in various 
interlocking patterns is equivalent to installing the armour units for the conventional constructions ( 
Motyka and Welsby 1987, D’Angremond et al. 1992, Takahashi 1997). U.S Army Crops, (1986) 
describes the use of gabions in the coastal environment subjected to wave forces and saltwater 
corrosion. The design of stepped gabion method of construction methods of spillways including gabion 
suitability and the hydraulic performances were investigated experimentally regarding the flow patterns, 
air-water flow properties, and energy dissipation (Wuthrich and Chanson 2014). For the present study, 
flexible tar coated polypropylene gabion box is used to protect stacked geotextile tube core, and gabion 
shield will act as armour. These gabion boxes will dissipate the wave energy because of its porous 
nature. It helps in scour protection and integrity of the geotextile tube core. The gabion was placed layer 
by layer in the form of English bond brickwork technique and correctly laced together horizontally and 
vertically using polypropylene tarred rope after the stacking of gabion box in position.   All the gabion 
boxes have tied each other manually to the adjoining boxes on all sides. This arrangement will protect 
the gabion boxes from movement in case of large wave forces. If any differential settlement of the soil 
occurs, the geotextile tube will adjust with soil bed profile because of the flexibility and porous nature of 
geotextile tube fabric. The geotextile tube embankments also protect the inland area from erosion and 
stormwater inundation and provide proper coastal protection from severe in-situ erosion. Further, it 
facilitated by a scour apron that has been designed to protect stacked geotextile tube. Heavy-duty 
plastic mesh type of gabion boxes are not used in coastal protection, hence its effectiveness to tested. 
 

2.4 Factors influencing the stability of geotextile tube and gabion boxes 

 
There are two major factors for the failures of geotextile tube structure: the hydrodynamic 

factors (such as inertia and drag) and geotechnical factors. The wave-induced lateral forces must 
counterbalance in addition to horizontal and vertical loads by the geotechnical characteristics of soil 
bed profile. Inadequate handling of these loads can lead to various types of failures of the geotextile 
tube embankment system. The factors influencing the stability of geotextile tubes are detailed in 
following sub-sections. 

 
2.4.1 Hydrodynamic failure mechanism 

 
Hydrodynamic loads can alter the shape and geometry-related characteristics of the geotextile 

tube configuration, locally as well as globally. This effect set up various mechanisms of failures as 
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reported by (Jackson et al. 2006) and (Lawson 2008). These studies show that sand loss or sand 
migration is due to the aggressive action of waves and currents which passes through the geotextile 
pores. This cause the failure of the geotextile tube containment system. These losses can detect a loss 
of sand fineness within the geotextile tube cross-section. The rate of sediment loss from the geotextile 
tube structure will initially influence the structure geometry, and in due time it will fail. To prevent the 
sand loss, the particle size of fill soil should be higher than the geotextile aperture size. Another reason 
for sediment loss (although not directly related to hydrodynamical loads) can be due to the damage of 
geotextile such as vandalism, bursting, and puncturing. The different types of hydrodynamic failure 
mechanism of geotextile tube due to sand loss are as follows. 
 
2.4.2 Geotechnical failure mechanism 

 
Geotechnical failures refer to the failure of the base or sub-base layer underneath the geotextile 

tube. Hence, such failures depended upon engineering characteristics and physical composition of soil 
which will vary concerning location, environment and influence of load acting upon them. Usually, 
engineering properties which modified during soil deformation are the shear strength, stiffness, and 
permeability. Coastal structures exposed to wind, waves and currents; hence these environment 
characteristics also influence the foundation soil properties and its stability. Such scenarios explained 
in detail in following sections. 
 

2.5 Need for the geotextile tube embankment 

 
Geotextile tube made of woven geotextile sheets which are flexible and perforated, hence 

allows water to exit. Thus the development of pore water pressure will be avoided. If any differential 
settlement occurs, the geotextile tube will adjust with soil bed profile because of the flexibility and porous 
nature of geotextile tube. These tubes will act as a solid core in the embankment and will serve as an 
impervious medium. However, these geotextile tube elements continuously subjected to various static 
and dynamic forces such as gravity, surcharge, and wave loads. In addition to the lateral forces, they 
support overburden pressure. A combination of these applied forces and loading may contribute to 
potential problems. Therefore, to counterbalance these forces gabion boxes are used to dissipate the 
large kinetic wave forces. Another significant advantage of the gabion boxes is that they shield the 
geotextile fabric from solar Ultra-Violet (UV) radiation and hence increase their durability. 
 

3. Experimental Investigation 
 

To understand the hydrodynamic behaviour of geotextile tube embankment, a series of 
experiments have been performed for two different models. Geotextile tube standalone Structure and 
a second model of Geotextile tube with gabion structure were installed. 
 
3.1 Test Facility 

 
The experiments conducted in a wave flume at the Department of Ocean Engineering, Indian 

Institute of Technology Madras, India. The flume is 72.5 m long, 2 m wide and 2 m deep. A hydraulic 
piston wavemaker is installed at one end of the flume and has been used to generate waves with 
predefined characteristics for these set of experiments. A personal computer, connected to the servo 
actuator was used to input the time history of the signal to the wave maker as well as for the data 
acquisition of the signals from wave gauges through an amplifier. An artificial beach consisting of a 
combination of a parabolic perforated steel sheet and a rubble mound is provided at the other end of 
the flume to absorb the generated waves efficiently. 

 

3.2 Details of Prototype and Scaled Model 

 

Sand filled geo-tubes and geo-bags will be an alternative source for coastal erosion and scour 
protection in the case where the conventional rubble mound and another kind of artificial concrete 
armour units cannot use as a protective measure in various circumstances, such as low bearing 
capacity, severe erosion, flooding. Erosion of shoreline is a predominant phenomenon which takes 
place because of movement of sand mass by wave action, tidal currents, and wave-induced currents. 
The conventional material of coastal protection is not only expensive and time-consuming, but this 
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material may not be readily available. Geosynthetics are innovative solutions for coastal erosion and 
protection which are cheap and quickly installable when compared to other conventional materials and 
methods. This paper discusses different approaches for construction of geo-tube embankment as a 
coastal protection structure using geosynthetics. Detailed scaled model studies of scale 1:10 of the 
geo-tube embankment with ten geo-tube of four-layer has studied without and with gabion protection. 
The model base width is 1.2 m and with a crest width of 0.25 m. Various tests were 
performed for different water depth such as maximum water depth of 0.5m and wave height of 0.1 m, 
0.2 m and 0.25 m  for wave period range of 0.6 sec to 2.5 sec. The prototype geo-tube embankment 
parameters had been scaled to model using Froude scaling. Using a chosen scaling ratio of 1:10 and 
model dimensions had arrived, and details had furnished in Table 1. 
 

Type of Structure Prototype Model (1:10) 
 

Geo-tube Circumference 9 m 0.9 m 

Geo-tube Diameter 3 m 0.3 m 

Gabion Box Dimension 2 m x1 m x 1 m 0.2 m x 0.1 m x 0.1 m 

High Tide Level (HTL) 4 m 0.4 m 

Strom Surge (SS) 1 m 0.1 m 

Maximum Height of Water Depth (D max) = 
HTL + SS 

 
5 m 

 
0.5 m 

 
Table 1. Details of Prototype and Scaled Model 

 

3.3 Model Setup and Test Condition 

 

The positions of the wave gauges and the erected model in the wave flume shown in Fig 3, and 

4 show the top view and side view, respectively, of the proposed model in a wave flume. The length of 

an individual geotextile tube structure and geotextile tube with gabion box structure is installed across 

the width of the wave flume as shown in Fig.4. Moreover, the 2 m width of the flume split along the 

middle of the flume with a 2 mm thick galvanised iron sheet for a distance of 18 m. It separates the 

wave flume into two parallel channels for the models to study. The first channel of the flume has a 

Geotextile tube structure type installed while the other has Geotextile tube with Gabion structure. The 

wall clearance between the model and either side of the flume wall as 2 cm. This configuration studied 

for various hydrodynamic coefficients and dissipation parameters under regular waves. Further, the two 

different cross-section of structures is shown in Fig.5 and 6. The performance of the structure for the 

design water depth of 0.5 m tested for a different range of wave period ranging from 1.5 sec to 4.7 sec 

under regular wave condition of varying wave heights.  

 

 

 

Fig. 3. Plan View of Wave flume with Models arrangement 
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Fig. 4. Typical Cross Section of Wave flume with Models 

 

 

Fig. 5. Typical Cross Section of Geotextile tube Section (GTS) 

 

 

Fig. 6. Typical Cross Section of Geotextile tube with Gabion Section (GGTS) 
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3.4 Estimation of hydrodynamic coefficients 

 
The effectiveness of the design in dissipating the incident wave energy is highly dependent 

upon the relationship between the wave characteristics, structural characteristics, and water depth. The 
hydrodynamic characteristics such as the reflection coefficient (KR) and transmission coefficient (KT) 
are obtained from the wave gauge measurements using three probe method (Mansard and Funke 
1980). This approach provides the spectral energy of the incident, reflected and transmitted waves. To 
obtained the reflection and transmission coefficient, the losses (KL) are calculated using Eq (1), by the 
conservation principle, i.e.  
 

𝑲𝑹 
𝟐 + 𝑲𝑻

𝟐+𝑲𝑳
𝟐 = 𝟏      (1) 

 
 An attempt was made to examine the effect of reduction on the depth of submergence of the 

structure in attenuating the incident waves. The reduced depth of submergence is expected to reduce 
the cost of installation of the proposed structure while increasing the water exchange beneath the 
structure. Further such a measure can provide an insight into the hydrodynamic efficiency of the 
structure under extreme scenarios. 
 
3.4.1 Reflection coefficient  

Incident waves may be reflected (partially or wholly) from a beach and coastal or harbour 
structures, depending on the wave characteristics and the structure geometry. The magnitude of the 
reflection can represent by a reflection coefficient (𝐾𝑅) as shown in Eq (2), which is nothing but the ratio 

of the reflected wave height (𝐻𝑅) to the incident wave height (𝐻𝐼 ). It can also obtain using wave energy 

as the square root, the ratio of the reflected wave energy (𝐸𝑅) to the incident wave energy (𝐸𝐼). 
 

𝑲𝑹 =
𝑯𝑹

𝑯𝑰
= √

𝑬𝑹

𝑬𝑰
       (2) 

 
Impermeable vertical walls fully reflect and so that majority of the non-overtopping incident 

waves (i.e., KR≈ 1.0). Beaches and sloped structures, however, reflect only a portion of incident wave 
energy. Several studies have been employed to estimate the amount of reflected energy regarding 
reflection coefficient (Harris and Sample 2009). Presently, the three-probe method used for determining 
reflection coefficient. It helps in the resolution of the incident and reflected amplitudes using least square 
technique and two-phase difference of the waves at three locations (Mansard and Funke 1980). 
 
3.4.2 Transmission coefficient  

The primary purpose of a breakwater or a coastal structure is to reduce the wave energy on its 
lee-side as well as to lessen the attenuation of approaching waves. The wave transmission is the wave 
energy which travels through a breakwater, either by passing through or by overtopping the structure. 
Wave energy attenuation in the lee-side of the breakwater is either dissipated by the structure (e.g., by 
friction, wave breaking, armour unit movement,) or reflected back as reflected wave energy (Yuliastuti 
and Hashim 2011). The effectiveness of a breakwater in attenuating wave energy measured by the 
amount of wave energy is transmitted or pass through the structure. Wave transmission is quantified 
by the using wave transmission coefficient by Eq (3). 
 

𝑲𝑻 =
𝑯𝑻

𝑯𝑰
= √

𝑬𝑻

𝑬𝑰
       (3) 

 
Where, KT is the wave transmission coefficient where, HT is the height of the transmitted waves on the 
leeward side of the structure, and HI is the height of the incident waves on the seaward of the structure. 
Alternatively, else regarding wave energy, one can rewrite as the square root the ratio of the transmitted 
wave energy (ET) to the incident wave energy (EI). 
 
3.4.3 Loss Coefficient or Dissipation Coefficient 

The portion of the energy judges the effectiveness of a coastal structure dissipated through 
friction, turbulence and wave breaking. Loss coefficient determined by the following relation given in Eq 
(4), loss Coefficient (𝐾𝐿) is also called as Dissipation coefficient. 
 

𝑲𝑳 =  √(𝟏 − 𝑲𝑹
𝟐 − 𝑲𝑻

𝟐)        (4) 
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4 Results and discussions 
 

The variation of 𝐾𝑅, 𝐾𝑇, 𝐾𝐿 , are studied for design water depth of 0.5 m. The former water-depth 
used for assessing the effect of high tides, whereas the latter one includes the high tide and storm 
surge. Results of the various hydrodynamic coefficients compared with non-dimensional parameter 
(𝐷/𝐿) for different wave steepness ranges 𝐻𝑚0/𝐿, where, 𝐻𝑚0 is the significant wave height obtained 

from the wave spectrum and 𝐷/𝐿 denotes the relative water depth.  𝐷 is usually the water depth it 
crosses the structure from toe and L is the respective wavelength of the corresponding period of the 
regular wave were tested. In general, the present study confirms that the geotextile tube configurations 
structures have better hydrodynamic performance than the conventional rubble mound structures 
concerning reflection and dissipation coefficients. These results are discussed separately and 
compared for geotextile tube structure (GTS) and geotextile tube with gabion structure (GGTS). The 
variation of 𝐾𝑅, 𝐾𝑇, 𝐾𝐿 with 𝐷/𝐿 for various wave steepness ratios are filtered and separated on three 

different wave steepness range, The results for 𝐾𝑅, 𝐾𝑇, and 𝐾𝐿 are discussed for three different wave 

steepness range (𝐻𝑚0/𝐿) viz. Lowest wave steepness (0.001 to 0.01), Moderate wave steepness (0.01 
to 0.02), and Highest wave steepness (0.02 to 0.038). Comparisons are discussed in the in the following 
sections. 

 

4.1 Water depth (0.5m) to study high tide effects and storm surge 

For the 0.5m water depth, the chosen water depth represents a scenario where the combined 
effects of high tide level and storm surge are studied. Herein, the water level is below 0.14 m for 
geotextile tube structure (GTS) beneath the crest of the structure height while the water level is 0.37 m 
beneath for geotextile tube with gabion structure (GGTS). The 𝐾𝑅 and 𝐾𝑇 are studied for the 𝐷/𝐿 range. 
Nevertheless, the 𝐾𝐿 is in the range between 0.65 and 0.95 (Figure 6 (d-f)), meaning that the energy 
lost from the interactions of the waves due to the structure geometry, roughness, porosity effect of 
gabion boxes, wave breaking and run-up over the structure.  
 
4.2.1 Influence of geotextile tube structure (GTS) 

The GTS model (of 0.64 m height) is 0.14 m above the water depth. The effects of 𝐷/𝐿  range 

were 0.0483 to 0.165 on the hydrodynamic coefficients are studied in Figures 6 (a-c). For the 𝐻𝑚0/𝐿 

range of 0.001 to 0.038 and maintaining 𝐷/𝐿 in the range of 0.0483 to 0.165, the 𝐾𝑅 is decreasing from 
80% to 30% as 𝐷/𝐿 increases and KT is also reducing from 25% to 2%. 𝐾𝐿 is increasing from 62% to 

95%. For lower 𝐻𝑚0/𝐿  range of 0.001 to 0.01, the 𝐾𝑅  is increasing  rapidly from 50% to 80% due to 

long wavelength. Further, the 𝐾𝑇   is found to be within a range of 2% to 27%. One must note that for 
lower 𝐻𝑚0/𝐿 values, 𝐾𝐿is increasing from 65% to 95%.  
 
4.2.2 Influence of geotextile tube with gabion structure (GGTS) 

For the GGTS 𝐷/𝐿 range is within 0.0483 to 0.165, were the freeboard height is 0.42 m above 
the water surface with a total height of structure as 0.92 m, since gabion boxes protect the geotextile 
tubes on the top. For the lower 𝐻𝑚0/𝐿 range i.e., 0.001 to 0.01, the hydrodynamic coefficients have a 

uniform change (Figures 6 (d-f)).  In the given scenario, the 𝐾𝑅 decreases from 75% to 50%, 𝐾𝑇 

increases from 2.5% to 30% and 𝐾𝐿 increases from 67.5% to 99% as 𝐷/𝐿 increases. The physical 
reason for the increase in hydrodynamic coefficients in the lower wave steepness range is due to the 
influence of longer wavelength. The 𝐾𝑅 is decreasing from 70% to 20%; the 𝐾𝑇is reducing from 15% to 

2%, and 𝐾𝐿 is increasing from 70% to 99%. For the smaller wave steepness (𝐻𝑚0/𝐿) range of 0.02 to 

0.038, the 𝐾𝑅 and 𝐾𝑇 resemble lower values with a noticeable higher 𝐾𝐿 value. It means that most of 
the energy is lost due to the interactions of the waves with the geotextile tube with gabion structure 
through wave breaking mechanism over the structure.  
 
4.2.3 Comparison of geotextile tube structure (GTS) and geotextile tube with gabion structure (GGTS) 

Comparing the different model cases (Figures 7 (a-c)) for estimating the efficiency of the 
geotextile tube with gabions, i.e., GTS and GGTS, the 𝐷/𝐿 is varied from 0.0483 to 0.165 for GTS while 

the 𝐷/𝐿 varies within 0.0483 to 0.165,  In GTS, the 𝐾𝑅 shows a large variation, i.e., 0.37 to 0.8 for the 

lower 𝐻𝑚0/𝐿  range of 0.001 to 0.01; this is mainly due to the long period waves. Similar significant 

change is found for the transmission rate 𝐾𝑇, which implies loss coefficient, i.e., the wave energy 
dissipation (due to porosity. Geometry, friction, etc.) has increased from 0.65 to 0.9. For GGTS, the 𝐾𝑅  

decreases while 𝐾𝑇  increases along with wave steepness. Also, the 𝐾𝐿 increases simultaneously which 
is due to the gabion boxes which are dissipating the wave energy. For both the cases, higher reflection 
and transmission coefficients are reported for longer wavelengths. Owing to the wave breaking from 
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reflections, again the small, medium and high wave steepness cases are chosen based on visual 
observations. One can easily observe that; the hydrodynamic characteristics are better for the geotextile 
tube with gabion structure. As both the reflection and transmission coefficient for the GGTS with a 
freeboard of 0.37 m, may be the optimum height of the relatively submerged depth to dissipate the 
incident waves. 
 

 
 

Fig.6 (a-c) Scatter plots of 0.5 m water depth showing a variation of D/L range over GTS. (d-f) 
Corresponding scatter plots for GGTS 

Geotextile tube Structure (GTS) Geotextile tube with Gabion Structure (GGTS) 
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Fig.7 (a-c) Scatter plots of 0.5 m water depth showing D/L vs KR, KT, KL   for GTS & GGTS 

5 Conclusions 

 

 The hydrodynamic performance of two different structure types has been examined and 

quantified. The wave reflection, transmission, and energy dissipation characteristics checked for regular 

waves of different wave heights and wave periods for design water depth. Both the models have higher 

energy dissipation characteristics. Usually, the reflection coefficient will be higher for long period waves. 
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b 
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However, Geotextile Tube with Gabion (GGTS) model provides a better reduction in reflection 

coefficients than the Geotextile Tube, section (GTS) model.  

 Considering the limitations of geotextile in coastal protection applications, a major problem with 

geotextile tube is that they have ultraviolet (U.V) stability even though it is eco-friendly to the marine 

environment. Geotextiles, when exposed to high UV radiation, will fail. Hence it is suggested to provide 

a model of Geotextile Tube with Gabion protection. It will preserve the integrity of the Geotextile tube 

core. Moreover, Gabion boxes are polypropylene tar coated mesh boxes filled with a smaller range of 

stones which increases that porosity. Such Gabion boxes are capable of dissipating large kinematic 

wave forces than the conventional monolithic coastal structures. In addition to these measures, Gabion 

boxes protect the Geotextile Tubes from various hydrodynamic and geotechnical failure. 
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